RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2014

THIRD YEAR

Date : 22/05/2014 Time : 11 am - 1 pm PHYSICS (Honours)

Paper : VII

Full Marks : 40

<u>Group – C</u>

(Answer <u>any four</u> questions)

1.	a)	Define binding energy B(A,Z) of a nucleus $_ZX^A$, and explain its physical significance.	[2]
	b)	From the shape of the E–A curve, where $E = \frac{B(A, Z)}{A}$ is the binding energy per nucleon, show that :	
		 i) Nuclear forces are attractive, short-ranged and have saturation properties; ii) Nuclear fission is energetically favourable for heavy nucleus; iii) Nuclear fission is energetically favourable for heavy nucleus; 	[6]
	c)	iii) Nuclear fusion is energetically favourable for light nuclei. Show that the separation energy of a proton from a nucleus $_ZX^A$ is given by :	[6]
		$S_{p} = B(A,Z) - B(A-1,Z-1).$	[2]
2.		How is nuclear size related with the mass number? Hence derive an expression for the density of nuclear matter.	[3]
	, ,	What are surface, volume and Coulomb energies of a nucleus under liquid drop model? Explain. Write down the Bethe-Weizsâcker formula for the binding energy of a nucleus.	[4]
	c)	Derive a formula for the atomic number of a most stable isobar with mass number A.	[3]
3.		Explain how a charged particle is detected in Geiger-Mueller (GM) counter. Describe a fixed frequency cyclotron and explain its basic principle of operation. Show that the radius of curvature(R) of the path of the particle in a cyclotron is proportional to \sqrt{n} , where n is the	[2]
			5+3]
4.	a)	Explain why β – ray spectrum is continuous.	[5]
	b)	Give examples of β^- , β^+ emissions and electrons capture.	[3]
	c)	Show that the decay of ${}^{7}\text{Be}_4$ to ${}^{7}\text{Li}_3$ can take place only by electrons capture and not by positron emission. [Given : $\mu({}^{7}\text{Be}_4) = 7.1963 \text{ u}$ and $\mu({}^{7}\text{Li}_3) = 7.0160 \text{ u}$]	[2]
5.	a)	Define Q-value of a nuclear reaction.	[2]
	b)	Find an expression for the Q-value of the reaction $a+b \rightarrow c+d$ in terms of the incident energy, ejectile energy and the scattering angle.	[5]
	c)	Find the Q-value of beta decay of a free neutron.	[3]
6.	a)	What is a nuclear reaction? How are they classified? State and explain the conservation laws associated with nuclear reaction.	[3]
	,	What is reaction cross section and how is it derived? Express the decay law interms of reaction cross section.	[4]
	c)	The cross section of ¹¹³ Cd for capturing thermal neutrons is 2×10^4 barns, the mean atomic mass of neutral Cadmium is 112u and its density is 8.64 kg/m^3 .	
		i) What fraction of an incident beam of thermal neutrons is absorbed by a Cadmium sheet of thickness 1mm?	
		ii) What thickness of Cadmium sheet is necessary to absorb 99% of the incident beam of thermal neutrons?	
		[¹¹³ Cd constitutes 12% of natural Cadmium and $1u = 1.66 \times 10^{-27} \text{ kg}$]	[3]

- 7. a) Which of the following interactions are allowed or disallowed? Give reasons for your answer.
 - i) $\pi^- + p \rightarrow \Sigma^+ + k^-$
 - ii) $\nu_{\mu} + n \rightarrow \mu^{-} + \Sigma^{+}$
 - iii) $k^- + p \rightarrow \Omega^- + k^- + k^0$
 - iv) $e^+ + e^- \rightarrow \mu^+ + \mu^-$
 - b) Write down the minimal interaction in which an antiproton can be created in a proton proton collision. If one proton is at rest in the laboratory, find the minimum kinetic energy of the incident proton so that the reaction is possible. $\left(m_p = 938 \frac{\text{MeV}}{c^2}\right)$ [4]

[4]

c) What are the decay products of a muon? Assume lepton number conservation. What is the order of magnitude of the life time of muon? [2]

ち 後 る 後 る る